Cerebral oxygenation and regional cerebral perfusion responses with resistance breathing during central hypovolemia.
نویسندگان
چکیده
Resistance breathing improves tolerance to central hypovolemia induced by lower body negative pressure (LBNP), but this is not related to protection of anterior cerebral blood flow [indexed by mean middle cerebral artery velocity (MCAv)]. We hypothesized that inspiratory resistance breathing improves tolerance to central hypovolemia by maintaining cerebral oxygenation (ScO2), and protecting cerebral blood flow in the posterior cerebral circulation [indexed by posterior cerebral artery velocity (PCAv)]. Eight subjects (4 male/4 female) completed two experimental sessions of a presyncopal-limited LBNP protocol (3 mmHg/min onset rate) with and without (Control) resistance breathing via an impedance threshold device (ITD). ScO2 (via near-infrared spectroscopy), MCAv and PCAv (both via transcranial Doppler ultrasound), and arterial pressure (via finger photoplethysmography) were measured continuously. Hemodynamic responses were analyzed between the Control and ITD condition at baseline (T1) and the time representing 10 s before presyncope in the Control condition (T2). While breathing on the ITD increased LBNP tolerance from 1,506 ± 75 s to 1,704 ± 88 s (P = 0.003), both mean MCAv and mean PCAv were similar between conditions at T2 (P ≥ 0.46), and decreased by the same magnitude with and without ITD breathing (P ≥ 0.53). ScO2 also decreased by ~9% with or without ITD breathing at T2 (P = 0.97), and there were also no differences in deoxygenated (dHb) or oxygenated hemoglobin (HbO2) between conditions at T2 (P ≥ 0.43). There was no evidence that protection of regional cerebral blood velocity (i.e., anterior or posterior cerebral circulation) nor cerebral oxygen extraction played a key role in the determination of tolerance to central hypovolemia with resistance breathing.
منابع مشابه
Changes in cerebral and somatic oxygenation during stage 1 palliation of hypoplastic left heart syndrome using continuous regional cerebral perfusion.
OBJECTIVES Stage 1 palliation of hypoplastic left heart syndrome requires the interruption of whole-body perfusion. Delayed reflow in the cerebral circulation secondary to prolonged elevation in vascular resistance occurs in neonates after deep hypothermic circulatory arrest. We examined relative changes in cerebral and somatic oxygenation with near-infrared spectroscopy while using a modified ...
متن کاملSyncope, cerebral perfusion, and oxygenation.
During standing, both the position of the cerebral circulation and the reductions in mean arterial pressure (MAP) and cardiac output challenge cerebral autoregulatory (CA) mechanisms. Syncope is most often associated with the upright position and can be provoked by any condition that jeopardizes cerebral blood flow (CBF) and regional cerebral tissue oxygenation (cO(2)Hb). Reflex (vasovagal) res...
متن کاملThe role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia.
Tolerance to central hypovolemia is highly variable, and accumulating evidence suggests that protection of anterior cerebral blood flow (CBF) is not an underlying mechanism. We hypothesized that individuals with high tolerance to central hypovolemia would exhibit protection of cerebral oxygenation (ScO2), and prolonged preservation of CBF in the posterior vs. anterior cerebral circulation. Eigh...
متن کاملThe effectiveness of high-flow regional cerebral perfusion in Norwood stage I palliation.
OBJECTIVE Regional cerebral perfusion (RCP) has been shown to provide cerebral circulatory support during Norwood procedure. In our institution, high-flow RCP (HFRCP) from the right innominate artery has been induced to keep sufficient cerebral and somatic oxygen delivery via collateral vessels. We studied the effectiveness of HFRCP to regional cerebral and somatic tissue oxygenation in Norwood...
متن کاملTolerance to central hypovolemia: the influence of oscillations in arterial pressure and cerebral blood velocity.
Higher oscillations of cerebral blood velocity and arterial pressure (AP) induced by breathing with inspiratory resistance are associated with delayed onset of symptoms and increased tolerance to central hypovolemia. We tested the hypothesis that subjects with high tolerance (HT) to central hypovolemia would display higher endogenous oscillations of cerebral blood velocity and AP at presyncope ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 313 2 شماره
صفحات -
تاریخ انتشار 2017